See also PDF online from Purves et al.

Method	Pros	Cons
Computational Modeling	 Forces researcher to be explicit about mechanism Allows for direct, testable predictions Simple but powerful (small changes, big effects; validity of a hypothesis) 	 Simplification of Nervous System Sometimes at odds with biology (e.g., "all knowing") Catastrophic interference Relatively narrow (re:, generalization) Research sometimes in isolation
Behavior (RT/accuracy/self report/etc.)	Most simple method & underlies all other methodsFlexible	Gives incomplete picture of mechanismOnly as good as your design
Single Cell Recording (not discussing in class, except Perception paper)	 Records at the level of individual neurons (usually) Direct measure of neuronal activity to expt manipulation 	 May record extracellularly; unclear then if activity is of single neuron Aggregate behavior might be more complicated (e.g., multiunit)
Lesions	 Convergence across humans & animals for particular brain region fxn How necessary is a brain region for a particular function 	 Don't know if effect isolated to region or its connection to other regions Compensatory strategy to minimize effects of lesion Difficulty in precision of area affected; hard to generalize In animals, training is much more difficult than in humans In humans, not under control of expter Ethical concerns for animal treatment
Genetic manipulations (optogenetics, epigenetics)	 Identify risk factors for diseases Which cognitive fxns are heritable (knockout) GxE interactions 	 Genes can have many downstream effects, so hard to isolate specific mechanism of action Often need a lot of people to make anything of GxE, and knockouts tend to be really specific (less generalizable)
Structural imaging (MRI, CT scans)	• Identify brain regions impacted in disorder, how disorder & healthy individuals vary as a fxn of damage	• Has little to do with a particular experimental manipulation (usually, re: temporal scale), only general abilities
DTI	• Discover the flow of information within the brain for white matter tracks	• Same as structural imaging above
TMS (newer things like tDCS, tACS)	 Can either impair or improve task performance Researchers are now looking at how stimulation can improve brain fxn Noninvasive virtual lesion 	 Effects of TMS usually brief Only works for superficial cortical regions Affects large area, limiting anatomical resolution Sometimes adverse effects
fMRI	• High spatial resolution underlying	• Indirect measure of neuronal activity

	the regions impacted by task manipulationsNoninvasive	OK/poor temporal resolutionNot cheap
EEG (ERPs)	 High temporal resolution underlying cognitive processes Direct measure of neuronal activity on scalp Cheap, noninvasive 	 Poor spatial resolution Needs a lot of trials to average over
MEG	 Similar to EEG, but affects sulci, not gyri Less affected by distortions in skull than EEG Has simpler source estimation 	• Same problems & benefits as EEG
PET	• Figuring out the concentration of particular neuromodulators in the brain (e.g., dopamine)	 Short half life of reagents Radioactive materials Expensive Poor temporal resolution (block designs)
Pharmacological perturbations (not in textbook)	 Drug use on cognitive processes Experimental control setting, effects monitored 	• Lack of specificity in the effects (don't know the actual mechanism)

Also not covered in textbook: eye-tracking (see: <u>https://en.wikipedia.org/wiki/Eye_tracking</u> for brief summary), EcoG (see: <u>https://en.wikipedia.org/wiki/Electrocorticography</u> for brief summary of what the method is)